Designing texture filters with genetic algorithms: An application to medical images
نویسندگان
چکیده
The problem of texture recognition is addressed by studying appropriate descriptors in the spatial frequency domain. During a training phase a filter is configured to determine different classes of texture by the response of its correlation with the Fourier spectrum of training-image templates. This is achieved by genetic algorithm-based optimisation. The technique is tested on standard texture patterns and then applied to magnetic resonance images of the brain to segment the cerebellum from the surrounding white and grey matter. Comparisons with established texture recognition techniques are presented, which show that the proposed method performs as well as, or better than, traditional techniques for the chosen instances of standard and anatomical texture and has the advantage of not having to decide which texture measure to use for a specific image structure. 0 1997 Elsevier Science B. R&sum& Le probltme de reconnaissance de texture est abordt en Ctudiant des descripteurs appropribs dans le domaine frequentiel spatial. Un filtre est configure durant une phase d'apprentissage, qui permet de determiner les differentes classes de textures a l'aide de la reponse de leur correlation avec le spectre de Fourier de modeles d'images d'apprentissage. Ceci est effectut par optimisation baste sur un algorithme genetique. La technique est testee sur des motifs de textures standards, puis appliquee a des images par resonnance magnetique du cerveau, afin de segmenter le cerebellum de la mat&e grise et blanche qui l'entoure. Des comparaisons sont faites avec des techniques Ctablies de reconnaissance de structures, qui montrent que la methode proposee se comporte aussi bien, voire mieux, que le: techniques traditionelles pour les exemples choisis de textures standard et anatomiques, et qu'elle a l'avantage de ne pas ntcessiter de decision quant a la mesure de texture g utiliser pour une structure d'image spkcifique. 0 1997 Elseviei Science B.V.
منابع مشابه
On the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملBiomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected ...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملLow latency IIR digital filter design by using metaheuristic optimization algorithms
Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 57 شماره
صفحات -
تاریخ انتشار 1997